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The hydromagnetic flow of a thermally stratified fluid confined between two 
rotating parallel plates is studied. The flow is assumed to be linear, steady and 
axially symmetric. The flow is driven both mechanically and thermally and 
general thermal boundary conditions are applied. Attention is focused upon the 
mechanism controlling the interior fluid (diffusion, Ekman pumping or hydro- 
magnetic forces) and upon the conditions under which laminated flow (av/az $. 0 )  
may occur. It is found that the occurrence of laminated flow is very sensitive to 
the thermal boundary conditions and is suppressed by hydromagnetic effects. 
For mixed boundary conditions, hydromagnetic forces control the interior and 
laminated flow is suppressed if a 2 O( I ) ,  where a2 represents the ratio of hydro- 
magnetic to Coriolis forces. For a constant heat flux, this occurs for a much 
weaker magnetic field: if a >, O(Ea). For a restricted range of the parameters, 
a new boundary layer, called the thermomagnetic layer, in which Coriolis, thermal 
and hydromagnetic forces balance may occur. 

1. Introduction 
In  the past few years there has been a great deal of interest in rotating, 

thermally stratified flows and in rotating hydromagnetic flows. This interest has 
been spurred in part by possible applications to geophysical and astrophysical 
problems and in part by the desire to increase our basic understanding of such 
flows. The primary purpose of the present paper is to combine these effects and 
to perform a study of rotating, thermally stratified, hydromagnetic flows. In  
particular, the ability of the magnetic forces to alter the flow which occurs in the 
non-magnetic case will be studied. 

Chandrasekhar (1961) has studied the thermal stability of confined rotating 
hydromagnetic fluids and found that hydromagnetic effects have the ability to 
decrease significantly the stability of such fluids. The present study of stably 
stratified fluids (heated from above) is, in a sense, the counterpart of Chandra- 
sekhar’s study of unstably stratified fluids (heated from below). The studies of 
wave motions which may occur in unbounded, rotating, stably stratified, hydro- 
magnetic flow (e.g. see Roberts & Soward 1972; Acheson & Hide 1973) do not 
bear directly upon the present work. 

In  the absence of stratification and magnetic effects, it is well known that 
steady flow of a rotating fluid obeys the Taylor-Proudman theorem outside 
viscous regions and exhibits columnar behaviour (i.e. a/az = 0, where SL = fie). 
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This constraint is a direct consequence of the vigorous meridional circulation 
which occurs between regions of differing vorticity in a homogeneous fluid. 
When this circulation occurs between an interior region and an Ekman layer, it 
is referred to as Ekman pumping. 

One of the most interesting features of thermal stratification is that the 
Taylor-Proudman theorem gives way to the thermal-wind equation and 
laminated flow may occur. Laminated flow means that av/& p 0,  where v is the 
azimuthal velocity component and z is the axial co-ordinate (see example 1 of 
Barcilon & Pedlosky 1 9 6 7 ~ ) .  This may occur when the stratification is sufficiently 
strong to keep the meridional circulation induced within the Ekman layers from 
penetrating the stratified interior fluid. In  this case, the interior is controlled by 
diffusion of heat and/or momentum or by Eddington-Sweet currents. 

It is well known from Gilman & Benton (1968) and from Loper & Benton (1970) 
that hydromagnetic forces act in concert with Ekman pumping to control the 
interior of a homogeneous rotating fluid. These hydromagnetic forces are generated 
by a meridional circulation of electric current between the interior and the 
Ekman-Hartmann layer. This circulation of current, called a Hartmann current, 
is strikingly similar in form and effect to Ekman pumping. In  particular, hydro- 
magnetic forces act to maintain columnar behaviour in the fluid just as the 
rotational constraint does [see equation (3.11) below]. 

In  the combined problem, there are three effects vying for control of the 
interior fluid: diffusion, Ekman pumping and Hartmann currents. In  the fol- 
lowing analysis, we shall investigate the conditions under which magnetic effects 
control the interior. 

In  order to simplify this presentation as much as possible, only the simplest 
geometry and boundary conditions will be used and the problem will be linear- 
ized. Steady flow in a radially unbounded cylindrical geometry will be studied, 
allowing a von KBrm&n type similarity to be employed. However, the flow will be 
driven both mechanically, by differential rotation of the boundaries, and 
thermally, by a centrifugal buoyancy term, and general thermal boundary 
conditions will be applied. 

The problem is formulated, non-dimensionalized and linearized in 8 2. A simi- 
larity transformation is introduced in $ 3. It is noted in this section that some 
assumption is crucial for the similarity to be successful and that the nature of 
this assumption governs, in part, whether laminated flow may occur or not. Also 
in $3, a hydromagnetic version of the thermal-wind equation is derived and 
discussed in detail. Solutions of the problem are presented and discussed in $3 4 
and 5.  Several limiting cases are presented in $ 4 to allow comparison with known 
results. Finally, a summary and conclusions are presented in $ 6 .  

2. Formulation of the problem 
Let us consider a thermally stratified, quasi-incompressible fluid with constant 

properties confined between two flat rotating boundaries. The fluid is electrically 
conducting, the boundaries are insulators and a uniform axial magnetic field is 
applied. We wish t,o study steady, axially symmetric, linearized flow in which 
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heating by viscous dissipation is negligible. We begin with the following set of 
governing equations, written in a rotating co-ordinate system: 

p ( q  . V) q + 2pnk x q = - v p  +pV(  *QW) 
-pgk+pc-,'(VxB)x B+vpV2q, (2.1) 

V . q  = 0, ( q . V ) T  = K P T ,  W), (2.3) 

(2.4) 

(2.5), (2.6) 

where q, B ,  p ,  T ,  p, g, v, pm, 5, K,  8, r,  B and r( are, respectively, the fluid velocity 
vector, magnetic-field vector, pressure, temperature, density, acceleration due to 
gravity, kinematic viscosity, magnetic permeability, electrical conductivity, 
thermal diffusivity, thermal expansion, cylindrical radius, rotation rate and 
an axial unit vector. 

The governing equations of motion may be cast in dimensionless form by 
assuming 

p = Po[l - Z ( T  - To)], 
V x ( B  x 9)  = (pm3)-lV2B, V .  B = 0, 

(2-7) i 
q = d2Lq*, T = To+ (AT/L)x+ (eQ2L/Eg)T*, 

p = po[l- (ZAT/.L)z- (eQ2L/g)T*], 

P = PO + * P O  Q+2-pogz + i(p,gEAT/L) z'+ cp0 Q'LZ1)*, 
B = Bo(k + E p ,  !2L2B*), 

V = V*l.L, z = Lz*, r = Lr*, 

where L is the distance between the two bounding plates, To is the temperature 
of the bottom plate in the absence of motion and To +AT is the temperature of 
the top plate in the absence of motion. The parameter e measures the strength of 
the fluid flow generated by motion of the boundary and an asterisk denotes 
a dimensionless variable. This scaling assumes that Eddington-Sweet currents 
are not larger than motion induced by the boundaries. [See comments following 
equation (4.6).] 

With axisymmetric flow, the solenoidal equations (2.2) and (2.6) are identically 
satisfied by the introduction of a stream function and a current function: 

(2-8) 1 q" = ?&5 P + v" 3 - T*-l(?-*+*)r* k, 
B* = $3 + b*3 - ?-*-l(r*$*)r* fr, 

where 1 and j are radial and azimuthal unit vectors and a subscript denotes 
differentiation. 

To linearize the governing equations, we must assume that 

EAT Q 1, e Q I, e3pmQL2 Q 1, sa@ 4 E ,  sQ2L/g Q 1, (2.9) 

where 6 represents the scale of variation of the stream function @. (In the 
interior 6 = 1; in the Ekman layer 6 = I#&.) The dimensionless equations of 
motion may now be linearized and written in component form (dropping the 
asterisks) as 

- 2v = -p ,  - SFrz/e - FrT + 2a2(V2 - r-2) $ + E(V2 - r-2) $z, (2.10) 
1-2 
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2$8 = 2a2b,+E(V2-r-2)v, (2.11) 

0 = -pa + T - EV2[(r$)r/r], (2.12) 

- (crS/r) (r$),. = E V T ,  (2.13) 

(2.14), (2.15) 

- (r$z)r/r = V2C(r9)5/r1, (2.16) 

- $= = (V2 - r2) #z, - v, = (V2 - r-2) b, 

where 

E = v/BL2, CT = V / K ,  P = B'L/g, S = ZATglQ'L, a2 = aBE/2poSZ. (2.17) 

In  this study, we shall ignore the vertical side walls and assume that the fluid is 
unbounded radially. One reason for this simplification is the fact that the side- 
wall boundary layers are certain to present a formidable problem. In  fact, 
a correct analysis of the side-wall boundary layers in a homogeneous rotating 
electrically conducting fluid has not yet been published. [Ingham's (1969) 
analysis is incorrect; his side-wall layers cannot carry the required vertical flux 
of electric current. A correct analysis has recently been completed by Vempaty 
(1974).] A second reason for ignoring the side walls is the fact that, for a large 
range of the parameters, they play only a passive role. Also, for the parameter 
range in which the side walls actively control the interior, the present analysis 
surprisingly yields the correct result, as will be shown by comparison with 
Barcilon & Pedlosky (1967b). However, it should be noted that it is possible 
t o  obtain similarity solutions which cannot be matched to any side-wall boundary 
layers (e.g. see Barcilon & Pedlosky 1967c), so the relevance of the present results 
to a confined geometry is not assured. 

With the neglect of the side walls, it  is sufficient to specify boundary condi- 
tions at  x = 0 and z = 1. We shall assume that the bounding plates are rigid 
rotators, the bottom one being at rest in the rotating system and the top one 
rotating differentially with angular velocity €0. The boundaries are assumed to 
be electrical insulators. The analysis will be performed simultaneously for two 
types of thermal boundary condition which yield differing solutions: case A 
satisfies constant-heat-flux conditions (Neumann conditions) while case B 
satisfies mixed thermal boundary conditions. Altogether we specify 

with T,=  0 (case A )  or T+CT, = 0 (caseB) 

where the constant C is known. 
The problem may be considerably simplified by ignoring the viscous terms in 

(2.10)-(2.12) and replacing the above boundary conditions by the steady 
Ekman-Hartmann compatibility conditions (see the appendix) : 

at z =  ii-4, ) $ = $z = b = q5s = 0, v = (a&+). 

$ = mEB(-+rT$rkv) 

with T, = o (case A )  or T +CT, = o (case B)J (2.18) 
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n,m = 
4(a4+ 1) 

5 

(2.19) 

3. Development of a similarity solution 
Since t'he ordinary hydrodynamic solution (Greenspan & Howard 1963), the 

hydromagnetic solution (Loper & Benton 1970) and the stratified solution 
(Barcilon & Pedlosky 19673) all display the von K&rm&n type of similarity 
outside the side-wall boundary layers, it  is reasonable to assume that the variables 
in the present combined analysis exhibit the same similarity : 

(3-1) 
T(r, x )  = y(z) + $r%(z)- 

Note that the temperature field has a term proportional to r2. Its absence pre- 
cludes consideration of laminated flow as can be seen from the thermal-wind 
equation 8vla.z = aT/ar. 

I ,w,4 = r@) ,  w,4 = rx(z) ,  
A T ,  4 = p ( 4  + t r2f ; (4 ,  b(r, 4 = r w ,  

Equations (2.10)-(2.13) and (2.15) now become 

2 0 1 ~ ~ '  - 2w + f;+ F y  + SFzle = - &r2Fr, 

2' - 0128' = 0, 

(3.2) 

(3.3) 

p' - q = $r2( - f;' + r ) ,  

- 2 d x  - Ey" - 2 E r  = &r2Er", 

w ' + P  = 0, (3.6) 

where the variable q5 has been eliminated by use of (2.16) and a prime denotes 
differentiation with respect to x .  

Boundary conditions (2.18) now are 

a t  z = + +  4. (3.7) 
w ) ,  

with 7, = vz = 0 (case A )  
or r+Crz = y +Cvz = 0 (case B )  

In  order that the similarity transformation be successful, all radial dependence 
must be eliminated from the problem. This means that (3.4) and (3.5) must each 
be divided into two equations by separately equating terms involving like powers 
of the radius to zero. Also, the term on the right-hand side of (3.2) must either be 
set equal to zero or assumed to be negligibly small. This must be done with care 
since the manner in which this troublesome term is neglected will affect the form 
of the solution. It may be neglected by assuming P to be sufficiently small (see 
Duncan 1966; Barcilon & Pedlosky 1967a; Niimi 1971) or by assuming r = 0 
(see Barcilon & Pedlosky 1 9 6 7 ~ ;  Homsy & Hudson 1969). Either of these assump- 
tions allowsmechanically driven laminated flow to occur. However, if it is assumed 
that both P is small and r = 0 (see Sakurai 19693) it is impossible to obtain 
mechanically driven laminated flow without side-wall effects. In  what follows, 
we shall assume that P is sufficiently small in case A to allow neglect of the 

i x = mE$( - 4 T  + 6 = nE&(& + gr w )  
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right-hand side of (3.2) compared with the dominant terms on the left-hand 
side : 

r2F7 < ( w ,  <, a 2 f ,  SFIS, Fy)  (case A ) .  (3.8) 

This, in effect, places a restriction upon the radial range of validity of the solution. 
For case B, no restriction upon P is necessary since r = 0, as will be seen below. 

A number of papers in the literature (Duncan 1966; Barcilon & Pedlosky 
1967a, b;  Sakurai 1969a, b ;  Niimi 1971) have assumed F to be sufficiently small 
to allow neglect of all terms in the radial momentum equation involving F .  This 
precludes the study of thermally driven fluid motions (unless explicitly forced 
by the thermal boundary conditions as in Duncan 1966). Also, neglect of these 
terms at this point makes it difficult to determine the range of F for which the 
resulting solution is valid. To help clarify these matters the terms Py and 
SFz/e will be retained in (3.2). 

The right-hand side of (3.5) reveals that 7 is, a t  most, a linear function of z .  
Application of the boundary conditions on 7 leads to 7 = constant for case A and 
7 = 0 for case B. This is in agreement with Niimi (1971), who found that it is 
necessary to impose a constant-heat-flux boundary condition to permit a non- 
trivial value of 7 to exist. Note that the term Er in  (3.5) represents radial conduc- 
tion of heat. It appears that this component of the thermal field would, in a more 
complete problem, be forced by the side-wall boundary conditions. In the present 
problem, the value of 7 is determined by a compatibility condition on t'he simi- 
larity equations. That is, from the left-hand side of ( 3 4 ,  we find 

X ( z ) d z  (case A) ,  

(case B),  
(3.9) 

where the boundary conditions on y have been used. 
The variable p appears only on the left-hand side of (3.4) and will not be con- 

sidered further. The variable < may be eliminated between the left-hand side of 
(3.2) and t,he right-hand side of (3.4) to yield 

2a2x" - 2 ~ '  + + F f  + SFIc = 0. (3.10) 

The problem now consists of (3.3), the left-hand side of (3.5), (3.6) and (3.10) 
subject to conditions (3.7), where 7 is given by (3.9). 

A hydromagnetic version of the thermal-wind equation may be obtained by 
differentiation of (3.3) and use of (3.6) and (3.10): 

2(1+ a*) W' = S F I ~  + 7 + ~ 7 ' .  (3.11) 

w' is a measure of the strength of the lamination of the flow. In  the absence of 
stratification (8 = 0), it is readily found from (3.9) and (3.5) that 7 = y' = 0 and 
(3.11) reduces to w' = 0 whether magnetic forces are present or not. That is, in 
the absence of stratification, magnetic forces are incapable of producing 
laminated flow. 

With stratification, the three terms on the right-hand side of (3.11) are capable 
of driving laminated flow. The k s t  term arises from a centrifugal buoyancy force 
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and is capable of driving an Eddington-Sweet circulation. These thermally driven 
flows have been investigated by Barcilon & Pedlosky ( 1 9 6 7 ~ )  and Homsy & 
Hudson (1969). The second term arises from a vertical buoyancy force and is 
generated either by explicit forcing in the thermal boundary conditions (Duncan 
1966) or indirectly via the mechanical boundary conditions (Barcilon & Pedlosky 
1967u, b ;  Niimi 1971). In  all previous analyses, the third term has been absent or 
has been assumed small. It will be seen in 3 5 that this term may become important 
in a new horizontal boundary layer. 

The ability of hydromagnetic effects to suppress laminated flow may be clearly 
seen in (3.11). As the magnetic interaction parameter a increases above unity, the 
magnitude of the laminated flow decreases rapidly, as the fourth power of a. In  
addition to this obvious transition at a = O(l) ,  another occurs at a much weaker 
magnetic field: a = O(E*). This may be seen as follows. Assuming w‘ = O(l) ,  
(3.6) yields 8’’ = O(1) and (3.3) yields x’ = O(a2). Thus if a2 2 O(E4) the meridi- 
onal circulation is no longer suppressed by stratification but is at  least as strong 
as in the unstratified case.? It will be seen below in $ 4  that laminated flow is 
suppressed whenever a B E* for the case of constant heat flux (case A )  and 
whenever a $= I for the case of mixed thermal boundary conditions (case B).  

Differentiation of (3.10) and (3.11) and combination with the left-hand side of 
(3.5) yield a single equation for x: 

X” - h3x = ETA~/cS,  (3.12) 

where A3 = uSFa2/E( I +a4). (3.13) 

The form of the solution depends upon the magnitude of this new parameter A. 
If h < 1, the problem has simple polynomial solutions, which are presented and 
discussed in $4.  All known results (i.e. for either 8 = 0 or a = 0) have h = 0. If 
h 3 I ,  entirely new boundary layers occur which involve both thermal and 
hydromagnetic effects. These solutions are presented in $5. 

4. Solutions valid for h < I 
If h < I ,  the solutions of (3.3), the left-hand side of (3.5), (3.6) and (3.10) 

subject to conditions (3.7) for cases A and B (corresponding to i = A and B 
respectively) are 

~ . = f  a 2 +  K i(~-i!), (4.1) 

xi = - +mEi + +Ki[mE* + a2(2 - %a)], ( 4 4  

Si = +nE* + &Ki[ - nEt + z - 221, (4.3) 

rA = +mE-bS - &n!JE-lKA[mEt + (4.4a) 

(4.4b) 

(4.5u) 

t If we assume Crs = O( i), as in Barcilon & Pedlosky (1967a), this argument shows that 
their analysis must include hydromagnetic effects if a2 3 O ( E ) .  
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q B  = +aSrnE-t( I - KB) (2C2 + C - ~ C Z  - z + 9) 
+ h S ( S / 2 4 ~ )  ( - 2C2 - C + ~ C Z  + z - 2.23 + ~ 4 ) ,  (4 .5b)  

K -  (4 .6a )  

KB = SF/Bs( 1 + a4) .  (4 .6b )  

aSE-*[m + 2FE+/as] 
A - 4( 1 + a4) + aXE-&[m + a2/6E*] ' 

The parameters K A  and KB measure the strength of the lamination and are of 
particular interest in the subsequent analysis. In  ( 4 . 6 a ) ,  the first term in the 
square bracket in the numerator represents mechanically driven laminated flow 
and the second thermally driven laminated flow. It may be seen from (4 .6b )  that 
there is no mechanically driven laminated flow for case B. If we wish to study 
thermally driven flow without differential rotation of the boundaries, all terms 
in (4.1)-(4.6) not divided by E should be omitted. Then we may set E = SF = EAT 
without loss of generality. 

The above solutions contain many effects: rotation, stratification, hydro- 
magnetic forces and thermal and mechanical driving. In  order to increase our 
confidence in and understanding of these solutions, we shall investigate several 
limiting cases. 

4.1. UnstratijiedJlow (S = 0) 
In this limit, the lamination constants K A  and KB are zero and the solutions 
reduce to 

Equation (4 .7)  yields the well-known result that the angular speed of the interior 
fluid is the average of the speeds of the bounding plates. This holds true for both 
ordinary hydrodynamic flow and hydromagnetic flow. The functions x and 6 are 
proportional to the axial velocity and axial electric current, respectively. If 
a = 0, x = -$E& (w = QEh) in agreement with equation (2.17.10) of Greenspan 
(1968).  Also, (4 .7b )  and ( 4 . 7 ~ )  agree with equations (31) and (37) of Gilman & 
Benton (1968).  

o = Q, x = -QrnEi, 6 = QnEi, T = 0. ( 4 . 7 a - d )  

4.2.  Non-magneticfEow (a = 0) 
In  this limit, the solutions reduce to 

where (4.11 a, b )  

It is apparent from ( 4 .  I I a)  that the thermally driven motions are small compared 
with those driven mechanically provided that 

F < ~a/4E*.  
sa/4E+, the solution (4.1 I a)  agrees with equation (21) of Niimi (1971),  

which is not surprising since he also adopted a similarity approach. However, in 
this case, (4.11 a)  also agrees with Barcilon & Pedlosky (1967b; see footnote on 

If F 
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p. 6 19) and this is surprising for the following reason. They obtained their solution 
by solving an interior flow problem controlled by viscosity and thermal diffusion 
and did not assume a similarity like (3.1) apriori. However, their solutions in the 
footnote on p. 619 satisfy VZU = V2w = 0 if we assume V' and V, to be linear in r. 
Thus the viscous forces are solenoidal and the interior must be controlled by 
radial diffusion of heat which generates a thermal field proportional to r2 identical 
to that given by ( 4 . 1 0 ~ ) .  

The laminated flow driven by the centrifugal buoyancy term in (4.10 a) is 
indistinguishable in form from that driven by the mechanical forcing. The two 
effects produce laminated flows of equal magnitude whenever F = O(saE-8). In  
fact, if E: = - LLZiE*/la, the two effects cancel and no lamination occurs. 

For case B, the lamination predicted by (4.8) and (4.11b) is in agreement with 
equation (3.7 a) of Barcilon & Pedlosky (196%) and with equation (3.3) of Homsy 
& Hudson (1969). In  this case, the lamination is produced entirely by the centri- 
fugal buoyancy term; there is no mechanically driven lamination. 

4.3. Stratijied, weakly magnetic$ow 
For case A ,  it  is sufficient to investigate the effect of the magnetic forces upon the 
stratification in the limit of a weak magnetic field (a < 1) since the non-magnetic 
balance is easily upset for this case. The lamination constant K,, given by (4.6a), 
becomes 

(4.12) 

It is easy to see from (4.12) that K ,  is strongly diminished whenever a 9 E*. 
That is, for the constant-heat-$ux boundary condition (case A ) ,  laminated $ow is 
suppreesed whenever a % Ea, regardless of the strength of the stratiJication. Assuming 
1 3 a B Et and strong stratification (d E*), the solutions are, to leading order, 

(4.13) 

(4.14) 

WA = + + (2- 8) 12FEl~~:a* ,  
X A  = &E*( - 1 + 62 - 6z2) + (62 - 6x2) FE/g€, 
8, = fE* + (Z - z2) (3E*/2a2 + ~ F E / c P x . ~ ) ,  (4.15) 

T A  = - 3aS/4a2 - Ffl/E, (4.16) 

q, = ~ o + K A ~ 2 ( l - ~ 2 ) ~ X ~ 2 / 1 2 E .  (4.17) 

In  this limit, mechanically forced laminated flow is suppressed while the 
thermal forcing SF/e drives a much smaller laminated flow, of order 

This lack of lamination occurs because, to  leading order, 7 + SF/€ = 0 and, with 
the assumption h < 1, the term F f  is small [see (3.11)]. It is interesting that, in 
the strongly stratified limit, meridional circulation is no longer suppressed but is 
driven by the hydromagnetic forces in (3.3). The advection of heat by x in (3.5) 
is balanced partly by radial conduction 7 and partly by vertical conduction 7". 
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Now condition (3.8) becomes rap < 1, which requires P < 1 for the radial 
range of validity to be large. P < 1 is consistent with the assumption that h is 
small. 

It is apparent from (4.5b) that laminated flow for case B is suppressed by 
hydromagnetic effects only for a $ 1. In  this case, 7 = 0 and it is impossible for 
the terms 7 and SF/e to cancel in (3.11) as in case A .  

4.4. Strong magnetic field (a 1) 
In this limit, the solutions simplify to 

wi = + + K ~ ( z  - +), (4 .18)  

xi = - E : / 2 b 3  + Qa2Ki(z - x 2 ) ,  (4.19) 

Si = E : / 2 4 a + + K i ( z - 9 ) ,  (4 .20)  

= c S / ~ ~ ~ ~ E J -  K A a 2 ~ X / 1 2 E ,  (4 .21)  

where 
KA = 3aXE-3[2-+ + 4PE*a3/cre] 

a5( 24a2E + ah') ' (4.22 a) 

K ,  = SF/2eu4. (4.223) 

From (4 .22a)  it  may be seen that, for case A ,  the lamination decreases at  least 
as fast as a-2 for a $ 1 and, for certain parameter ranges, as fast as Also the 
lamination driven by the thermal term SF/e rapidly becomes more important 
than that driven mechanically as a increases beyond unity. 

Case B is much less complicated: as a increases beyond unity, laminated flow 
decreases as a-4 as predicted by (3.11).  

5. Solutions valid for h $ 1 
In  this limit, the region outside the Ekman-Hartmann layers splits into three: 

an interior, a top boundary layer and a bottom boundary layer. Since (3.12) is 
a third-order equation, the upper and lower layers do not have identical structure: 
the upper layer behaves like exp [ - A( I - x ) ]  while the lower layer behaves like 
exp ( - +hz) sin (4 x 34hx + k ) .  The upper layer is thin and monotonic while the 
lower layer is thicker and oscillatory. Since these layers rely on both thermal and 
magnetic forces for their existence, they will be called thermomagnetic layers, or 
TM layers for brevity. 

In this section we shall assume that C, X, a and P are all of unit order when 
ordered with respect to E while e is small. This makes h large, of order E-*. In 
what follows, only the leading-order solutions will be given. 

The solutions to the problem for case A are 

w = 9 + R,ha-2{exp [ - h( 1 - x ) ]  - 2 exp ( - &Ax) cos (3 x 3 thz) } ,  

x = EF/ae+R, {  -exp [ - h(1- z ) ]  +exp ( -  ghx) [ - cos (4 x 3thz) 
(5.1) 

+ 3ksin (* x 34hz)]), (5 .2)  
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1 --\ 

A 

TM layer - 
.) 

FIGURE 1. ---, schematic meridional topology of lines tangential to velocity field: 
--- , electric current. 

6 = +nEt + RAa-2{1 - exp [-A( I -z)] 

7 = yo + 2crSR, E-lh-2( - hz + exp [ - A( 1 - z) ]  

+ exp ( - +hz) [ - cos (+ x 3ihx) + 34 sin (+ x 3thz)]}, 

- 2 exp ( - * A x )  cos (4 x 36 hz)}, 

(5.3) 

(5.4) 

(5.5) 

where RA = +mE* + EPIrs. (5.6) 

7 = - SF/€ + .%SFRA/€h, 

For case B, to leading order, 

w = RB(- I +mE+ha-2exp [ - h(i - z ) ]  

x = R,{-mE+exp[-h(i-z)] 

6 = R,a-2{(m - na2) Ei -mEBexp [ - h(1- z)] 

7 = (1 + C) S/e - Sz/e + 2 d m  RB E-ilh-2 exp [ - A( 1 - x ) ]  

+exp ( - +hz) [ - 2 cos (+ x 34h.z) + (2 x 3-6) sin [g x 3Qhz)]}, (5.7) 

+ ( 4aa/34 h) exp ( - ihz) sin (4 x 3* hz)}, (5.8) 

+(4a2/3+h)exp(-+hz)s in(*x  3+hz)}, (5.9) 

+8exp(-&hz)[-cos(~x 34hZ)+3-k3in(+ x 36hz)]/e(l-hC), (5.10) 

(5.11) where R, = S F / ~ S (  1 + a4) (1 - hC). 
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These solutions are entirely new; there are no limit checks which can be made 
to compare with previous work. For case A ,  the solutions appear to be well 
behaved for the parameter range chosen in (5.1). In  the interior, laminated flow 
is absent to exponential order and the fluid's angular velocity is the average of 
those of the top and bottom plates, which is reassuring. The angular velocity 
generated in the TM layers is small. However, since these layers are much thicker 
than the EH (Ekman-Hartmann) layers, this slight angular-velocity defect is 
able to drive a meridional circulation of the same order as that due to the EH 
layers. (This is quite similar to the situation in the magnetic diffusion region for 
a homogeneous fluid; see Benton & Loper 1969.) 

The mass flows +mEt pumped by the top and bottom EH layers close within 
the respective TM layers and do not penetrate the interior. However, this does 
not mean that vertical motions are absent from the interior; a circulation of 
strength E F / m  is drawn radially inwards within the top TM layer, then moves 
downwards across the interior and radially outwards within the bottom TM layer 
(see figure I). The heat advected downwards by this vertical motion is balanced 
by radial conduction of heat (that is, the terms 2aS~ and Er in (3.5) balance 
within the interior). This same value of r generates a vertical pressure gradient c, 
via the right-hand side of (3.4), which is just that value required to balance the 
centrifugal buoyancy term SFz/c in (3.2). 

The electric current $nE* pumped by the EH layers completes a circuit as it 
would in the unstratified case. In  addition, there is a thermally induced circula- 
tion of magnitude mEt/2a2 + EF/ma2 which is drawn radially inwards within the 
lower TM layer, then moves upwards across the interior and radially outwards 
within the top TM layer (see figure 1). These vertical currents which pass through 
the interior do not exert any forces on the fluid if w' = 0. If lamination is present 
(d + 0) these currents act to suppress it [see (3.6)]. 

The thermal perturbations r and 7 are larger than unit order for the parameter 
range chosen but they are still small compared with the imposed thermal field, so 
that the linearization is still valid. 

In  contrast to case A ,  the solutions for h 9 1 with mixed thermal boundary 
conditions (case B)  are pathological with large perturbations and unexpected 
features such as the bottom TM layer being much stronger than the top. It may 
be seen from (5.10) that the order of the induced thermal field 7 is the same as 
that applied and the linearization is invalid. In  fact, the total temperature field 
is isothermal in the interior; all heat transferred must flow through the bottom 
TM layer. This situation is very similar to that discussed by Barcilon & Pedlosky 
(19674  in their Q 5. We must conclude, as they did, that it  is extremely unlikely 
that solutions (5.7)-(5.11) can represent any flow within a finite cylinder. 

6. Summary and conclusions 
This has been a study of steady, linear, axisymmetric, rotating, thermally 

stratified, hydromagnetic flow in a radially unbounded cylinder. The flow was 
driven both mechanically (by differential rotation of the boundaries) and 
thermally (by a centrifugal buoyancy force). The analysis has been performed for 
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both constant-heat-flux boundary conditions (case A )  and mixed thermal 
boundary conditions (case B). 

The primary goal of this study was to determine the factors which cause or 
prevent laminated flow (i.e. awlax  =t= 0). The factors found to be most important 
are the thermal boundary conditions and the magnitude of the magnetic inter- 
action parameter a. The results, summarized in dimensional terms, are as follows. 
For constant-heat-flux boundary conditions (case A )  with aSFaa/E(l +a4) < 1, 

rnah'eE-* + 2SF r - av _ -  
a x  ' c~SE-*[rn + a2/6E*] + 4( 1 + a4) z' 

For mixed thermal boundary conditions (case B)  with crSFa2/E( 1 + a4) < < 1, 

For constant-heat-flux boundary conditions (case A )  with aSFa2/E(l +a4) 9 1, 
av/az = rQSF/2L(l +a4). 

av/az = 0. 

The nature of the solutions and the influence of the governing parameters are 
quite different depending upon the thermal boundary conditions chosen. For 
Dirichlet or mixed boundary conditions (case B), the temperature is completely 
independent of the radius (7 = 0) ,  while for Neumann conditions (case A) ,  a por- 
tion 7 of the thermal field may vary as r2 and radial conduction of heat is possible. 
Consequently, laminated flow may be driven both thermally and mechanically 
for case A but only thermally for case B. Thermally driven motions are much 
smaller than mechanically driven ones if F < msa/4Et. 

It was found that magnetic effects control the interior and suppress laminated 
flow for a > Ea for case A and for a > 1 for case B. For case A ,  the magnetic 
influence upon the magnitude of the radial conduction 7 causes the right-hand 
side of (3.1 1)  to become very small whenever a % Ei ,  thus suppressing laminated 
flow. On the other hand, for case B, r = 0 and cannot balance SF/e in (3.11); in 
this case the factor 1 +a4 on the left-hand side acts to suppress laminated flow. 

One unexpected development in the analysis was the appearance of a new type 
of boundary layer, dubbed a thermomagnetic (TM) layer, which occurs for 

Within this layer a combination of thermal, magnetic and Coriolis forces balances, 
although the last are not essential for the existence of the layer. The solutions for 
this layer for case A appear to be quite reasonable, showing a complete suppres- 
sion of laminated flow in the interior. The solutions for case B violate the assump- 
tions made to linearize the problem and therefore cannot be trusted. 

a8Fa2/E( 1 + a4) % 1. 

This work was supported in part by the National Science Foundation under 
grant GA-36134 and in part by the Office of Naval Research under contract 
N-00014-68-0159. This paper is contribution no. 11 1 of the Geophysical Fluid 
Dynamics Institute, Florida State University. 

Appendix 
The purpose of this appendix is to derive the hydromagnetic analogue of the 

Ekman compatibility conditions, referred to as the Ekman-Hartmann compati- 
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bility conditions in a thermally stratified fluid. This analysis will be more general 
than is necessary for the main text in order to provide proper perspective. We 
begin by assuming that each dependent variable consists of interior and 
boundary-layer parts, e.g. 

where the superscripts i, + and - denote components in the interior and top 
and bottom Ekman-Hartmann layers respectively. To analyse the top and 
bottom layers simultaneously, we may introduce the same stretched co-ordinate 
for both: let 

v = vi+v*, 

z = t + $ T  E*& (A 1)  

where the upper and lower signs refer to the top and bottom layers, respectively. 
Now 

a( )'-/ax = T E-*a( )*/ag. 
In  writing down the equations for the Ekman-Hartmann layers, care must be 

exercised in deriving the proper thermal equation. The linearized form (2.13) is 
misleading because the neglected terms contain axial derivatives which are large 
in the boundary layers; we need to start with the nonlinear form 

- aX(r$), + ue(qhzC - ( r $ ) r q )  = ErV2T. 

In the main text, the nonlinear terms have been neglected by assuming 
eu$6 < E,  where 6 is the boundary-layer thickness. It should be noted that the 
present analysis with an imposed thermal field independent of the radius differs 
from that of Carrier (1965) with an imposed field constant on paraboloidal 
surfaces x - $Fr2. 

The boundary-layer equations derived from (2.10)-(2.12), (A 2) and (2.14)- 
(2.16) are 

- 2 ~ +  = - p $  - B', T* 5 2u2E-4$% T E-Q,$g, 

2$+ = 2cx2b*:T E b t ,  

0 = f E- ip t  + T+ - (r$&),/r, 

b$ = f E h k ,  4; = Eh,&. (A 7)9 (A 8) 

(A 3) 

(A 4) 

(A 5) 

- aX(r$*), + aeE-*[ T r$$(T: + Tf ) f (TP + r$*),Tt] = T&, (A 6) 

Equation (A 6) is nonlinear. Assuming that 

eu@ < Ef,  ea$* < E i ,  
it reduces to a linear form: 

- aS(r$k)r T ueE-bT:@ = T&. (A Ga) 

FrT* Q E-*$&s, (A 10) 

The centrifugal buoyancy term in (A 3) is negligibly small provided that 

and we obtain the dynamics for linear Ekman-Hartmann layers. If constraint 
(A10) were not satisfied, we should have a buoyant boundary layer; non- 
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magnetic forms of such a layer have been studied by Carrier (1965) and Hsueh 
(1969). 

We now turn to the boundary conditions. Assuming the boundaries to be 
impermeable and electrically insulating but allowing general azimuthal velocity 
and thermal boundary conditions yields 

at x = $&$. 1 $ = $z = b = $z = 0 
v = v+(T), AT+CT, = 0 

In boundary-layer notation these conditions are 

$ iT  E-*$f = 0 1 p+$* = 0, 
bi+b+ = 0, $iT E-*$g = 0, vi+& = v*( r )  a t  5 = 0. (A 11)  

The solutions for the Ekman-Hartmann layer are known (Gilman & Benton 

ATi + CT; T C E d T t  = 0 

1968). The thermal equation (A 6a)  is easily solved. Altogether, we have 

vf = (v+(r) - vi) e-85 cos 75, 

$f = & E*(v,(r) - vi) e-Pc [m cos ye+ sin 751, 
b+ = 5 EJ(v,(r)-d)e-Pc[ -ncosy5+msinyc], 

@ = [ - E/2( 1 + a4)] (v*(r) - vi) e-PC [cos yc+ a2sin 761, 

(A 12) 

(A 13) 

(A 14) 

(A 15) 

+P[2a2-(1+a4):]siny~}, (A 16) 

p, y = [( 1 + a4p 5 a214 (A 17)  where 

These solutions satisfy the conditions on vf and $f. The remaining conditions 
(A 11) yield the compatibility conditions 

(A 19a) 

(A 19b, c)  I qV = mEJ(  T w+(r) & vi) 

bi = nE4(+vA(r)T wi), qF = mEJ(+v*(r)Tv$)  

Although we have solved a linear boundary-layer equation for the temperature, 
we have arrived a t  a nonlinear compatibility equation (A 19d). However, if we 
assume 

CCT E*( 1 + a3), (A 20) 
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the third term is much smaller than the second term and the compatibility con- 
dition is linearized. Using (A 16) we see that the constraint (A 10) is satisfied if 

PcrsTi < 1 +a2, PuSEB < 1 +a5. 

Further, from (A 19d) it may be seen that the interior thermal field satisfies the 
imposed thermal boundary conditions directly provided that 

US G i+a4. (A 22) 
We shall assume that conditions (A 20)-(A 22) are satisfied by the flow analysed 
in the main text. 
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